Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 119: 103797, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38340467

RESUMO

This study investigated the impact of long-term heat acclimation (HA) training on mouse thermoregulation, metabolism, and running performance in temperate (T) and hot (H) environments. Male Swiss mice were divided into 1) Sedentary (SED) mice kept in T (22 °C; SED/T), 2) Endurance Trained mice (ET, 1 h/day, 5 days/week, 8 weeks, 60 % of maximum speed) in T (ET/T), 3) SED kept in H (32 °C; SED/H), and 4) ET in H (ET/H). All groups performed incremental load tests (ILT) in both environments before (pre-ET) and after four and eight weeks of ET. In the pre-ET period, H impaired (∼30 %) performance variables (maximum speed and external work) and increased (1.3 °C) maximum abdominal body temperature compared with T. In T, after four weeks, although ET/H exercised at a lower (∼30 %) absolute intensity than ET/T, performance variables and aerobic power (peak oxygen uptake, VO2peak) were similarly increased in both ET groups compared with SED/T. After eight weeks, the external work was higher in both ET groups compared with SED/T. Only ET/T significantly increased VO2peak (∼11 %) relative to its pre-ET period. In H, only after eight weeks, both ET groups improved (∼19 %) maximum speed and reduced (∼46 %) post-ILT blood lactate concentrations compared with their respective pre-ET values. Liver glycogen content increased (34 %) in both ET groups and SED/H compared with SED/T. Thus, ET/H was performed at a lower absolute intensity but promoted similar effects to ET/T on metabolism, aerobic power, and running performance. Our findings open perspectives for applying HA training as part of a training program or orthopedic and metabolic rehabilitation programs in injured or even obese animals, reducing mechanical load with equivalent or higher physiological demand.


Assuntos
Temperatura Alta , Corrida , Masculino , Camundongos , Animais , Regulação da Temperatura Corporal , Corrida/fisiologia , Consumo de Oxigênio , Aclimatação/fisiologia
2.
Chin J Physiol ; 63(4): 171-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32859884

RESUMO

During overnight sleep, the longest postabsorptive and inactive phase of the day causes protein catabolism and loss. However, the daytime ingestion of dairy proteins has been shown to stimulate muscle protein synthesis and growth. This study compared the effects of pre-sleep supplementation of a protein blend (PB) composed of micellar casein (MCa) and whey protein (1:1) versus isolate MCa on the plasma levels of branched-chain amino acids (BCAAs) and the activation of the mechanistic target of rapamycin (mTOR) signaling, a critical intracellular pathway involved in the regulation of muscle protein synthesis. After 10 h of fasting during the active phase, rats were fed with a single dose of PB or MCa (5.6 g protein/kg of body mass) by gavage, and samples of blood and gastrocnemius muscle were collected at 30, 90, and 450 min. PB and MCa supplementations induced an increase (~3-fold, P < 0.001) of plasma BCAAs at 30 and 90 min. Most importantly, the stimulatory phosphorylation levels of mTOR and its downstream target p70 ribosomal protein S6 kinase (p70S6K) were similarly higher (~2.5-fold, P < 0.001) 30 and 90 min after MCa and PB. Plasma levels of leucine, isoleucine, valine, and overall BCAAs were correlated with the activation of mTOR (P < 0.001) and p70S6K (P < 0.001). MCa and PB supplementations before the inactive phase of rats resulted in an anabolic milieu in the skeletal muscle by inducing a transient increase in plasma BCAAs and a similar activation of the mTOR/p70S6K axis.


Assuntos
Músculo Esquelético , Animais , Caseínas , Suplementos Nutricionais , Leucina , Fosforilação , Ratos , Sirolimo , Serina-Treonina Quinases TOR
3.
Nutrients ; 12(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466231

RESUMO

Based on the fact that taurine can increase lipid metabolism, the objective of the present study was to evaluate the effects of different doses of acute taurine supplementation on lipid oxidation levels in healthy young men after a single bout of fasting aerobic exercise. A double-blind, acute, and crossover study design was conducted. Seventeen men (age 24.8 ± 4.07y; BMI: 23.9 ± 2.57 kg/m²) participated in the present study. Different doses of taurine (TAU) (3 g or 6 g) or placebo were supplemented 90 minutes before a single bout of fasting aerobic exercise (on a treadmill at 60% of VO2 max). The subjects performed three trials, and each one was separated by seven days. Blood samples were collected at baseline and after the exercise protocol of each test to analyze plasma levels of glycerol and taurine. Lipid and carbohydrate oxidation were determined immediately after exercise for 15 minutes by indirect calorimetry. We observed that TAU supplementation (6 g) increased lipid oxidation (38%) and reduced the respiratory coefficient (4%) when compared to the placebo (p < 0.05). However, no differences in lipid oxidation were observed between the different doses of taurine (3 g and 6 g). For glycerol concentrations, there were no differences between trials. Six grams of TAU supplementation 90 minutes before a single bout of aerobic exercise in a fasted state was sufficient to increase the lipid oxidation post-exercise in healthy young men.


Assuntos
Suplementos Nutricionais , Exercício Físico , Jejum , Metabolismo dos Lipídeos/efeitos dos fármacos , Taurina/administração & dosagem , Adulto , Índice de Massa Corporal , Peso Corporal , Calorimetria Indireta , Estudos Cross-Over , Método Duplo-Cego , Teste de Esforço , Humanos , Masculino , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Taurina/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...